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a b s t r a c t

This paper presents a study of the nonlinear dynamic behavior of a gearshift cable and

more specifically of the associated tizzing phenomenon. A gearshift cable is composed

of an inner wire that can slide freely in an outer composite housing. When undergoing

harmonic excitation, the inner wire interacts with the housing. Hammer and swept sine

is shown that the behavior of the outer housing is nonlinear and depends on the

amplitude of the excitation. The assembled gearshift cable is then set up on the shaker

and the nonlinear vibro-impacting phenomenon is studied. Finally a finite element

model, based on the Euler–Bernoulli beams and the Rayleigh damping coefficients,

proves to offer good correlation with the measured data for different excitation

frequencies. A period doubling bifurcation is observed both experimentally and

numerically.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Recently, vibration and acoustics have been growing concerns for car manufacturers. Most of their efforts have been
concentrated on controlling the motor’s vibrations with shock absorbers and different foams to limit propagation of noise
and vibration to the passenger’s compartment. As the biggest source of vibration is isolated, secondary vibrations and
noises start to appear, such as the ones caused by the gearshift cables of either an automatic or manual transmission. Fig. 1
illustrates the global configuration of the manual gearshift under a car hood. It is composed of two cables: one that ensures
gear selection and the other that engages the gear. Each cable is then itself composed of two separate pieces as shown in
Fig. 2: a flexible inner wire and a protective housing. The inner wire is attached to the shift lever in the passenger’s
compartment at one end and to the gearbox actuator at the other end. To ensure effort transmission, the inner wire is free
to slide in its housing, itself attached to the shift box at one end and to the gearbox at the other end. Since both components
are fixed to the gearbox, the whole system is subject to the motor’s vibrations which cause a repeated vibro-impact
phenomenon where the inner wire interacts with the housing. We will refer to this phenomenon as cable ‘‘tizzing’’. The
multiple impacts create annoying noises and vibrations that are transmitted to the shift box and into the passenger’s
compartment.
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Fig. 2. Close up of the cable structure.

Fig. 1. Setup of a manual gearshift cable in a car.
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Repeated impacts are of great interest in science and engineering because of their complex dynamic behavior. Even a
simple one degree of freedom impact oscillator can exhibit many different steady-state responses under harmonic
excitation. Shaw and Holmes [1] and many after thoroughly explored different mechanical systems and presented the
periodic, quasi-periodic solutions, and the various routes to chaos. Now, studies are extended to multidegree of freedom
(mdof) vibro-impacting systems such as ground moling machines [2], ultrasonic percussion drill [3], rotor/stator contacts
[4–6], delamination in composite beams [7], and beams with stops [8–10].

Considering the complexity of the structure and the numerical difficulties associated with vibro-impact
modelling, the goal of this work is to investigate and model the sources of nonlinearities causing cable tizzing.
Therefore, our first concern is the inner wire, which presents many similarities with the one presented by Otrin and
Boltezar [11]. As in their study, no axial preload is applied to the cable. The second section investigates the nonlinear
effect of the interwire friction in the outer housing undergoing different excitation amplitudes on a sine sweep test
bench. Both components are modelled with Euler–Bernoulli beams. The first two sections offer estimates of the
Young modulus and Rayleigh damping coefficients to be used in the finite element model. In the third section, the
dynamic response of the assembled system is presented and the nonlinear vibro-impacting phenomenon associated
to tizzing is studied. In the last section, a complete finite element model is proposed in which the inner wire is
constrained in its housing with node-to-node gap elements. Finally the computed time series are compared with the
experimental measurements.
2. Identification of the inner wire’s characteristics

The inner wire is composed of 19 steel wires: one center wire covered by six left laid helical wires, which are again
covered by 12 right laid helical wires. This strand is wrapped in an outer helical band. The total diameter is 3.2 mm. Fig. 3(a)
illustrates the cross-section of the wire. It has the same characteristics as the cables studied by Otrin and Boltezar [11]. In
their work, they considered using Euler–Bernoulli beams to compute the vibration transmissibility of straight and curved
cables with no axial preload. An experimental test bench was set up to validate the model and their results proved to be
reliable when the elasticity modulus is frequency dependent and the Rayleigh coefficients are dependent of the length of
the cable. The Rayleigh damping coefficients a and b define a proportional viscous damping where the damping matrix C is
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Fig. 3. Cross-sections of the inner wire and the protective housing.

Fig. 4. Experimental setup used for identification of the inner cable: (a) complete setup, (b) accelerometer and (c) cable supports.
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related to the mass M and stiffness K matrix (see [17]) by

C ¼ aMþ bK (1)

We present a similar approach to identify the wire’s characteristics in the following paragraphs.
2.1. Experimental setup

The length of our cable being different (0.85 m), we could not directly use the results of Otrin and Boltezar’s [11] study.
We therefore conducted a hammer impact test to determine the eigenfrequencies of the fixed–fixed wire. Fig. 4 presents
the experimental setup. The cable abutments used on vehicle were used to obtain the fixed–fixed condition (Fig. 4(c)).
Because of the cable’s small size, consistent impact on the cable could not be achieved, thus the support was chosen as the
impact point. A lightweight accelerometer was glued on the cable to measure the response (Fig. 4(b)). With such an
approach, the cable’s behavior was determined as if it was fixed to the gearbox.
2.2. Identification

The following identification process in the frequency domain was used to determine a unique homogeneous Young
modulus: the first six eigenfrequencies were localized, and a least-square minimization was carried out. The
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Fig. 5. Comparison of the experimental and computed FRF’s of the inner cable (–) measurement (� � �) computation.
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eigenfrequencies were estimated with the theoretical eigenfrequencies of a fixed–fixed Euler–Bernoulli beam

fi ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffi
EIb4

i

rSL4

vuut (2)

where fi is the i- th eigenfrequency, E the Young’s modulus, I the second area moment, r the mass density, S the cross-
section and L the length of the beam. bi is a solution of the well-known transcendental equation

1þ cosðbLÞ:coshðbLÞ ¼ 0 (3)

An iterative procedure was then used to determine the best Rayleigh coefficients to fit the amplitude of the simulated
response to the experimental response. The identified Young’s modulus is 4� 1010 N m�1 and the Rayleigh coefficients are
a ¼ 0:8269 s�1 and b ¼ 7� 10�5 s. For the sake of simplicity, we did not completely adopt Otrin and Boltezar’s [11]
approach in which the Young modulus depends on the frequency. Fig. 5 compares the measured and computed frequency
response functions of the cable. As seen, the response functions are quite different for several reasons. First of all, the cable
abutments are not modelled. Secondly, the fixed–fixed conditions are not totally achieved in the experimental setup and
finally, the lighweight accelerometer was not accounted for in the model. However, we will see in Section 5 that these
approximations are sufficient to correctly reproduce cable tizzing.
3. Identification of the housing’s characteristics

As stated in the introduction, the whole gearshift system is influenced by the motor’s fundamental excitations between
20 and 200 Hz. Therefore it is important to estimate the modal parameters of the inner wire and housing in this frequency
bandwidth. In the automotive industry, qualification and transmissibility analysis of the gearshift mechanism is usually
done in the frequency range of 20–1000 Hz because the dynamics in the gearbox generate excitation frequencies above
200 Hz. Nevertheless, in our case we are interested in cable tizzing, which is independent of the high frequencies generated
by the gearbox.

As seen in Fig. 3(b), the housing has a composite structure. A plastic tube is the first layer and is the one in contact with
the inner wire. It is then covered by a helical band similar to the one wrapping the inner wire. Extra rigidity is added by a
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Fig. 6. Experimental setup used to test the outer housing: (a) complete setup, (b) attachment on shaker and (c) attachment on shift box.

50 100 150 200 250
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

Frequency [Hz]

A
cc

el
er

at
io

n 
[m

.s
−2

]

Fig. 7. Measured housing’s acceleration output for different excitation amplitudes: (–) 0:5 m s�2, (- -) 1 m s�2, (� � �) 2 m s�2 and (-�-) 4 m s�2.
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layer of helical wires and finally a viscoelastic coating is added to protect the cables from wear and high temperatures. It is
0.68 m long.
3.1. Experimental setup

Because of the high damping rates induced by the complex structure of the housing, a hammer test was no longer
sufficient. Fig. 6(a) presents the experimental setup. The housing is attached to the shaker by a metallic part that imitates
the gearbox attachments (Fig. 6(b)). This piece has no modes below 500 Hz. The other end of the housing is attached to the
shift box as it would be in a vehicle (Fig. 6(c)). A slow sine sweep is applied to an electrodynamic shaker and constant input
acceleration is controlled by the means of an accelerometer. The housing’s acceleration response is measured at 135 mm
from the end that is attached to the shift box. Our approach is different from the usual transmissibility analysis where the
response is measured in terms of force on the cable’s supports. Such a measurement requires modifying the supports, and
we did not want influence the global dynamic behavior of the housing with its abutments.

Fig. 7 shows the results of the sine sweeps for different levels of constant input accelerations between 20 and 250 Hz.
The amplitude of the first harmonic is presented. Some responses are cutoff because the shaker could not insure the
imposed acceleration assignment. As the excitation increases, the eigenfrequencies shift to the left of the spectrum. Such a
shift is known in cable structures and is due to interwire friction. As the excitation level rises, the interwire friction is freed
and the structure becomes less rigid. Detailed reviews can be found in the works of Elata et al. [12] or Raoff and Davies [13].
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Moreover, the distorted aspect of the curves for the lower excitation amplitudes are typical of dry friction systems [14].
However, since the abutments are an assembly of rubber and plastic pieces, the rubber and additional contacts could also
contribute to the observed softening.

Generally, Jenkin and Masing elements are used to model the hysteresis present in bending slack cables. Sauter [15] uses
this approach to model Stockbridge dampers. But, identifying the parameters that vary along the cable is a cumbersome
task. Therefore a simpler approach is used here which is adaptable to large scale problems. It is similar to the ones used by
Zhu and Meguid [16] and Otrin and Boltezar [11]. All the nonlinear effects are included in a variable elasticity modulus: for
each excitation amplitude the cable will have a different Young’s modulus. The Rayleigh damping coefficients will follow a
similar rule.

3.2. Identification of the housing’s parameters

Once the sine sweep is done, an identification process in the frequency domain is used to determine the Young modulus
and Rayleigh damping coefficients for each excitation amplitude. An iterative procedure is used to fit the eigenfrequencies
and amplitudes of the simulated response to the experimental response on the third and fourth modes. A finite element
Euler–Bernoulli beam is used to compute the simulated response. One end of the beam is fixed to the support, and at the
other an acceleration perpendicular to the housing is applied. The equation used to determine the simulated output
responses is the following:

M €U þ C _U þ KU ¼ Fexte
iot (4)

where M, C, K are respectively the mass, damping and stiffness matrix. C is given by Eq. (1). Fext is the amplitude of the
imposed harmonic excitation and U the displacement. We can directly seek for the stationary solution in the form

UðtÞ ¼ ~Ueiotþf (5)
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Fig. 8. Comparison of measured (–) and simulated (� � �) acceleration outputs for different input excitation amplitude: (a) 0:5 m s�2, (b) 1 m s�2, (c) 2 m s�2

and (d) 4 m s�2.
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where ~U corresponds to the harmonic displacements, o the excitation pulsation and f the phase. Substituting this
equation in (4) yields

½�o2Mþ ioCþ K� � ~U ¼ Fext (6)

We concentrate here on the third and fourth modes because experience shows that tizzing is more important for the
corresponding motor regimes. Fig. 8 compares the measured output responses and the computed responses. As expected,
comparison is very good on the third and fourth modes for the different excitation levels, whereas on the second mode
correlation is uneven. Table 1 presents the equivalent elasticity modulus and Rayleigh damping coefficients for each
excitation amplitude. The modal damping rates xi are determined by the following relationship [17]:

xi ¼
1

2
�

a
oi
þ boi

� �
Fig. 9. Experimental setup with inner wire and outer housing: (a) complete setup, (b) attachment on shaker and (c) attachment on shift box.

Table 1
Identified Young modulus and Rayleigh coefficients of the outer housing.

Input level ðm s�2) E ð1010 N m�1) a ðs�1Þ b ð10�5 sÞ x3 x4

0.5 1.419 90 0.05 5.7 3.4

1.0 1.337 97 0.95 6.7 4.3

2.0 1.233 83 3.1 6.8 5.3

4.0 1.087 95 4.0 8.3 6.4
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where oi is the i-th eigenfrequency, and a and b are the Rayleigh coefficients defined by Eq. (1). As seen, the critical
damping rates for modes 3 and 4 are relatively high and increase with the input level. Much higher values have previously
been encountered in the literature for simple slack cable structures [16].

In the two previous sections simplified models were proposed and identified to represent the dynamic behavior of
complex cable structures. Since the strains and displacements are small, a linear beam theory was used and pro-
portional Rayleigh coefficients reproduced the global damping of the cables. However, for different excitation amplitudes
different elasticity modulus and damping coefficients were estimated to account for the nonlinear effects in the outer
housing. Such an approach is motivated by the need to have a simple model transposable to large scale engineering
problems.
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Fig. 10. Measured time responses at 106 Hz for different excitation amplitudes: (a) 0:5 m s�2, (b) 1 m s�2, (c) 2 m s�2 and (d) 4 m s�2.
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Fig. 11. Magnitude spectrums of time series for an excitation of 106 Hz for different levels: (–) 0:5 m s�2, (� � �) 1 m s�2, ( -- ) 2 m s�2 and (- �) 4 m s�2.
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4. Output response of the assembled inner wire and housing

4.1. Experimental setup

In this section we present the experimental results of the shaker tests applied to the assembled system. Fig. 9(a)
presents the experimental setup. The inner wire is set inside its housing and both pieces are linked to the shaker in the
same way they would be attached in a vehicle (Fig. 9(b)). The other end is attached to the shift box (Fig. 9(c)). The whole
system undergoes the shaker’s excitation. Time series were measured to determine the steady-state dynamic behavior of
the gearshift cable for different forcing frequencies and amplitudes.

4.2. Experimental results

Fig. 10 shows the measured time series for an excitation frequency of a 106 Hz. For the lowest input level (Fig. 10(a)) the
response is a sine function of the same frequency as the excitation. In this case there is no tizzing. As input acceleration
increases (Figs. 10(b)–(d)) a periodic high frequency signal is superimposed to the base sine signal. Cable tizzing is the
source of this high frequency signal. Physically, it corresponds to periodic impacts between the inner wire and its housing.
Fig. 11 compares the magnitude spectrums of each time signal. As the excitation level increases, the high frequency content
also increases. A similar behavior can be noticed at 186 Hz (Fig. 12). Impacts between cable and housing appear at 1 m s�2

(Fig. 12(b)) and increase with the excitation level. Another interesting phenomenon is worth pointing out: for an excitation
amplitude of 4 m s�2 (Fig. 12(d)) the response signal has a period twice as long as the forcing period. This kind of behavior
occurs in nonlinear systems after a period-doubling bifurcation and is well documented in Nayfeh and Balachandran [18].

5. The complete finite element model

In the previous sections were presented the vibro-impacting phenomenon and the model parameters that can be used
to represent the dynamic behavior of the inner wire and its housing. Considering the difficulty of modelling multiple
impact systems, we chose the simplest finite element model that could represent the behavior of the assembled gearshift
cable. The inner wire is considered to be linear and we use the previously identified homogeneous Young’s modulus and
Rayleigh coefficients. The inner wire is 0.73 m long and its supports are not modelled, even though their effects on the
behavior are included in the identified parameters. The protective housing has a nonlinear behavior depending on the
excitation amplitude. It is 0.68 m long.
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Fig. 12. Measured time responses at 186 Hz for different excitation amplitudes: (a) 0:5 m s�2, (b) 1 m s�2, (c) 2 m s�2 and (d) 4 m s�2.
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The inner wire is composed of 73 Euler–Bernoulli beam elements, and the housing of 68 Euler–Bernoulli beam
elements. To constrain the wire in its protective housing 31 node-to-node gap elements are added. The gap at each node is
set at 0.25 mm. At the shift box side, the inner wire and housing have fixed boundary conditions. At the gearbox side, the
boundary conditions are free. Harmonic excitation was applied to the vertical degree-of-freedom of the wire and housing at
the gearbox end. After a static step, during which gravity was applied to both components, the steady-state response was
computed using a modified Newmark’s integration scheme. Application of the gravity was necessary to initialize the
contacts between the inner wire and housing. The contact law was considered to be plastic and when contact occurred, the
constraint was enforced with Lagrange multipliers. More details on the used algorithm can be found in Abaqus [19]. The
complete finite element model after the first static step is presented in Fig. 13.
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Fig. 14. Computed time series at 106 Hz for different excitation amplitudes: (a) 0:5 m s�2, (b) 1 m s�2, (c) 2 m s�2 and (d) 4 m s�2.

Fig. 13. Complete finite element model after the first static step.
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Fig. 15. Comparison of measured (–) an computed (� � �) magnitude spectrums for 106 Hz and different excitation amplitudes: (a) 0:5 m s�2, (b) 1 m s�2, (c)

2 m s�2 and (d) 4 m s�2.
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Fig. 16. Computed time series at 186 Hz for different excitation amplitudes: (a) 0:5 m s�2, (b) 1 m s�2, (c) 2 m s�2 and (d) 4 m s�2.
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Fig. 17. Comparison of measured (a, c) and computed (b, d) time series for an input level of 4 m s�2 at 126 Hz (a, b) and 156 Hz (c, d).
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5.1. Computation results

Fig. 14 presents the computed time series for different excitation amplitudes at 106 Hz. Correlation with the measured
acceleration responses is very good and the model exhibits the same behavior as the real gearshift cable for all excitation
amplitudes. Cable tizzing appears for an excitation of 1 m s�2 (Fig. 14(b)) and the impacts occur at the same phase as on the
measured data. Fig. 15 compares the magnitude spectrums of the measured and computed time series for 106 Hz. For all
excitation levels, the high frequency content is similar.

Fig. 16 presents the computed time series for 186 Hz. Even if the overall levels are not as accurate as for 106 Hz, the
dynamic behavior is well represented and tizzing appears at 2 m s�2 (Fig. 16(c)). For an input acceleration of 4 m s�2, a
period doubled response is also computed (Fig. 16(d)).

Figs. 17(a) and (b) compare the measured and computed response for an excitation level of 4 m s�2 and frequency of
126 Hz. Once again the computation offers good correlation with the measurements. No high frequencies are observed in
the time series, as there is no interaction between the inner wire and its housing. Figs. 17(c) and (d) compare the measured
and computed response for the same excitation level at a frequency of 156 Hz. This time both time series are not
comparable. For this excitation frequency there is a localized mode in which the inner wire’s and housing’s abutments
interact strongly. Since these parts are not explicitly included in the model we cannot expect to reproduce their effect.
6. Conclusions

In this paper, we investigated cable tizzing. It is a vibro-impact phenomenon found in gearshift cables: for certain
excitation frequencies and amplitudes an annoying tizzing sound is heard. We showed here that it actually consists of
multiple impacts between the inner wire and the protective housing when undergoing the motor’s vibrations. Because the
inner wire and housing both have complex cable structures, it was necessary to find simple models that could be used
efficiently in time stepping algorithms. Therefore a linear beam theory was used to model the inner wire. Its homogeneous
Young’s modulus and unique Rayleigh coefficients were determined with a hammer test. The linear beam theory was also
used for the housing. However, because of the nonlinear effects due to the interwire friction, the abutments and boundary
conditions, variable elasticity modulus and Rayleigh damping coefficients were used. They are dependent on the excitation
level and were determined with a swept sine test. Once models for the inner wire and for the housing were established,
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they were assembled in the final finite element model in which the inner wire is constrained in the housing with gap
elements. The numerical computations yield results that are comparable with the experimental measurements: tizzing
appears at the same frequencies and excitation amplitudes, even dynamic instabilities are predicted by the model.

Keeping in mind these encouraging results, we must not forget several shortcomings of the model. First of all, cable
tizzing is sensitive to the modes of the inner wire and the housing. Therefore the modes at each frequency must be
correctly determined. In this paper, the elastic modulus of the housing depends on the excitation amplitude but for a better
correlation it should also be a function of the excitation frequency. A better identification of the inner wire could also help
improve the correlation results for all excitation frequencies. Secondly, the inner wire’s and housing’s abutments have not
been modelled. As we have seen, for certain excitation frequencies (156 Hz) their influence can be important. Finally, it
would be interesting to carry out a full parametric study to determine the influence of the different parameters on the
response of the system. Our future work will be oriented in these directions.
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